Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

نویسندگان

  • Lara Marrone
  • Ina Poser
  • Ian Casci
  • Julia Japtok
  • Peter Reinhardt
  • Antje Janosch
  • Cordula Andree
  • Hyun O. Lee
  • Claudia Moebius
  • Ellen Koerner
  • Lydia Reinhardt
  • Maria Elena Cicardi
  • Karl Hackmann
  • Barbara Klink
  • Angelo Poletti
  • Simon Alberti
  • Marc Bickle
  • Andreas Hermann
  • Udai Bhan Pandey
  • Anthony A. Hyman
  • Jared L. Sterneckert
چکیده

Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy meets fused in sarcoma-positive stress granules.

Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link betwee...

متن کامل

Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells

Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in ...

متن کامل

Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress

Mutations in fused in sarcoma (FUS), a DNA/RNA binding protein, are associated with familial amyotrophic lateral sclerosis (ALS). However, little is known about how ALS-causing mutations alter protein-protein and protein-RNA complexes and contribute to neurodegeneration. In this study, we identified protein arginine methyltransferase 1 (PRMT1) as a protein that more avidly associates with ALS-l...

متن کامل

ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons

Patient-derived induced Pluripotent Stem Cells (iPSCs) provide an opportunity to study human diseases mainly in those cases where no suitable model systems are available. Here we have taken advantage of in vitro iPSCs derived from patients affected by Amyotrophic Lateral Sclerosis and carrying mutations in the RNA-binding proteins FUS to study the cellular behavior of the mutant proteins in the...

متن کامل

ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules

Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018